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SUMMARY

A broad analytical study of the effect of edge restraint on the buckling
stress of geometrically perfect, axially compressed circular cylindrical
shells, based on linear elastic theory, is presented. An overall evalu-
ation of this effect is made by studying the 16 limiting cases of restraint
which correspond to the vanishing of generalized forces and generalized
displacements at an edge. Of the 16 limiting cases, 7 of which are studied
for the first time, it 1s found that 8 permit buckling to occur at stresses
less than the classical theoretical value of buckling stress. The fact
thet both theory and experiments indicate that the effect of shell length
on the buckling stress can usually be disregarded is used in the analysis.
This fact suggests that shells may be assumed to be semi-infinite; as a

consequence, formulas for buckling stresses are determined in essentially
closed form.
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INTRODUCTT ON

Recent attention has been devoted to the study of the effect of edge
restraint on the buckling behavior of thin circular cylindrical shells
subjected to exial compression [1 thrcugh 6]%. A recent survey of the
results of these studies and the conclusions drawn from them has been
prepared by Hoff [7].

In addition to the strict enforcement of edge conditions at the instant of
buckling, Stein [8,9], Fischer [10], and Almroth [11] have accounted for
the prebuckling deformations due to edge restraint from the inception of
compressive loading for shells with the various types of simply supported
and completely clamped edges. The effect upon the comr -ssive buckling
stress of lateral pressure was also studied by these autaors.

The present study 1s a broad treatment of the effect of edge restrairt on
the compressive buckling stress of circular cylindrical shells; the analysis
is simplified by treating semi-infinite shells, since previoue experience
has indicated that the effect of shell length on the buckling stress is
negligible, unless the shells are very short [95,6]. Limiting cases of edge
restraint which correspond to the vanishing of generalized forces and
generalized displacements at an cdge are treated with the ald of the linear
Donnell equations. The buckling solutions are obtained without great diffi-
culty, and most of the results are presented in essentially closed form.

Of the 16 limiting cases of edge restraint, 7 are examined here for the
first time; additional information regarding the remaining cases is also
presented. In particula , a closed-form expression for the buckling
eriterion treated numerically in Reference 2 (and again in Reference 6) is
derived, the solution found by Hoff in Reference 1 is extracted from this
expression as a special case, &nd the results of Reference 6 for long shells
with completely clamped edges are reestablished readily.

With these results at hand, it is possible to summarize the information
obtainable from linear elastic theory regarding the effect of edge restraint
on the buckling stress cf axially compressed circular cylindrical shells.
The governing equations which are utilized in the analysis are discussed
thoroughly in order to put the results presented here and those previously
obtained in References 2, 8, 9, 10, and 11 in proper perspective.

The present investigation represents & single detailed analysis in the
overall program of plate and shell theoretical analyses currently in
progress at Stanford U: versity in the Department of Aeronautics &and Astro-
nautics. Unfortunately, there appears to be no published experimental data
available at the present time with which the analytical results presented
herein can be compared. A systematic, complementary, experimental investi-
gation into edge-fixity effects is currently in progress under this same

*
Numbers in brackets indicate the references listed at the end of the
report.




contract, but quantitative results are, as yet, unavailable. In view of
the success of the statistical approach to shell buckling experiments
developed earlier in the experimental phases of the contract work, reasorn=
able correlation of test results with linear elastic theory can be expected.

BASIC THEORY

THE KARMAN-DONNELL BQUATIONS

The plate equations of von Kdrmdn were extended by Donnell [12] to the
analysis of circular cylindrical shells; these equations are the foundation
of the present analysis and may be written as

W
L wQ XX
= - W W - axfaea 1
oy E(,:qr yxx,yy~ R ) (1)
and
D\ L 1l
=)y W - W +2F W - F W +=)=0 2
(t)v F:Y.Y » XX X KXy :xx( Yy R) ( )

where F 1is an Alry stress function defined such that
0 F 0 - 0 F (3)
Boundary conditions for complete cylinders with edges along constant x-

curves are defined by the four following alternate choices of quantities
which may be prescribed:

U or oo
x
\'s or 'ro
Xy
W or R. = - D(W + (2-v)Ww __ )+ tedw  + tro W
X » XXX XYy X ,x Xy ,¥y
W or M =<-D(W__ +wW__)
X X )n ’y-y

With reference to the figure (page 3), U, V, and W are the components of
the displacement vector in the axial, tangential, and radial directions,
respectively, and the coordinates describing the undeformed shell midsur-
fece are x, y = R, and z.

The strains at the shell midsurface are given by

0 1 2
= Ux? 5(w,x) ]
(continued)




Circular Cylindrical Shell Coordinate System
and Sign Convention.
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0 W 1l 2
e. =V _ -=+% (W i
Yy ¥ R 2(,y) ()
7O=U +V_ + W W
xy ’y bs ’x}y

=—'.W‘ = - W K =-W >
x a0 Ky oo xy XY (%)

The stress-strain and moment-curvature relations for an isotropic Hookean
elastic waterial are

0o _ 0 0 )
Ec. =0 - yo
x x y
0 0 0
e = g - e 6
g = Oy = VO } (6)
E 0 - 1_0
2(1+y) 7xy Xy J

M = D(Kx + wcy)
M, = D(Ky + W) (7)
M’W = D(1-v)xw

where M , My , Mxy are the moment resultants and D = Et3/12(1-v2) .

THE LINEARIZED DONNELL EQUATIONS FOR COMPRESSIVE AXIAL PRESTRESS

The membrane solution to the Karmén-Donnell equations for uniform axial
compression is

2 ™
Fo = - %
: \
wog-.vg_} (8)
Up = - & |
V=0 |

This membrane or "momentless" state can exist only if the uniform radial
expansion wo is permitted to occur,




If equilibrium states which differ only slightly from the membrane state
are considered and if sufficiently small changes in all quantities, say,
Fyy Uy V9, and wl, are assumed, the basic equations can be linearized.
The ulbst}tution of™ F, + F,, etc., into equation (1) through (7) and
subsequent linearization result in the following equations governing the
perturbations:from the membrane state:

k4 E
VE = - Y, (9)
and
(2) hw + oW = —ﬁ—Fl XX 20 (10)
t v 1 1,xx -

where the increments in the midsurface stresses are obtained from Fl by
the relations

0'2=F 'ro =« F ao =F

1 l)yy : XY_-L llw 2 yl lin (u)

These stresses are related to the displacement components by the following
equations

0 0 )
EU. =0 - Vo
1,x xy Yy
W
1 0 0 &
g ) - (2
E 0
m(ul;y * v]-)x) = ?ﬂl )

Equations (9) through (12) have been put in a convenient nondimensional
form by Nachbar and Hoff (2], who define the following new variables®:

- U i)1/2 .. A (?_E-)l/a
c’cl K acl
W F
1 1 (2E ) o
Vo= f = —_— P = (13)
R E(‘cl %1
» a(&)l/a o~ x(&)"2
R °c1 R ccl

—
The notation used here is slightly different from the notation in
reference 2.



wvhere ooy 18 the classical buckling stress from linear theory given by
the formula

E it
o 5 = (14)

With the aid of the definitions in equation (13), equations (9) through
(12) can be replaced by the following dimensionless expressions:

)

]
v+ L 0 (15)
vhw + 2pw - f =0 (16)
sEE sEE
0 0 0
= f y = w}p ) = Ef l
% T e Ty T e %y T e e
u)§ - f:w B Vf)§§
V’Q T f:§§ B Vf:W ‘ (18)
Uo V= '2(l+v)f,§¢
2 =
where v ( ) ( )’gg + ( )’W (19)

The boundary conditions for the linearized equations require the specifi-
cation of

0
u or o = Ef
xl JW

0
= «Ef 20
v or Txyl E LED ( )

1/2
acl

x 'Et(ﬁ‘) (",gee+(2"’)",§cpcp ’ 2"“,5)

4
Q
e}
-
I

and

c,c:l
Ve oM 'm(_z‘f‘)(“,ee*w,w)

Equations (15) through (18), (19), and (20) will be used in the subsequent
buckling analysis; they are equivelent to the equations deduced by Donnell
[13] for compressive axial prestress.

The purpose of describing in detail the derivation of the basic equations
is to emphasize the following two points:

6 .



1. Consistent linear stability equations, along with their assoc-
iated boundary conditions, are always cbtained by linearizing
consistent nonlinear equations about the basic state of equili-
brium whose -cability is to be investigated. The alternate
techniques for deriving stability equations, even when based
upon appropriate modification of small displacement theory by
the inclusion of the effects of "apparent buckling forces", must
be utilized with caution and are not recommended; the é&ccuracy
and consistency of the resulting equations and assoclated
boundary conditions cannot be assured or easily assessed. The
boundary conditions employed in Reference 2, for example, are
inconsistent with the differential equations upon which the
analysis is based,* as has been pointed out in Reference 6; a
closed-form expression for the buckling criterion studied in
Reference 2 will be derived subsequently, thus demonstrating the
advantages of consistency.

2. The linear stability equations used by Stein [8,9], Fischer [10],
and Almroth [11] in their studies of compressive buckling of
cylindrical shells werc derived by linearization of the Kdrmdn-
Donnell equations about basic states of equilibrium which differ
from the membrane state equation (8). These authors account for the
effect of axisymmetric prebuckling deformations, as previously men-
tioned in the introduction, which rigorously enforce the prescribed
boundary conditions in the basic states of equilibrium. For
axially compressed cylinders, Almroth [1l], who also performed
calculations with these nonuniform prebuckling deformations
neglected, states that the results which he obtained using the
equivalent of equations (9) and (10) are not significantly
different from those obtained using equations in which the bound-
ary conditions are rigorously enforced from the inception of
compressive loading.

SOLUTIONS OF THE BASIC EQUATIONS FOR COMPLETE CYLINDRICAL SHELLS

THE FORM OF THE SOLUTIONS

In the case of the complete cylindrical shell, f and w must be periodic
functions of the circumferential coordinate y. Since only derivatives of
even orders appear in equations (15) and (16), it is obvious that products
of functions of ¢ alone with either sin(esy/R) or cos(sy/R), where s
is an integer, can be made to satisfy them. The ordinary differential

*

Although the problem was formulated with inconsistent boundary conditions,
the numerical calculations were performed after the inconsistent terms
had been discarded on the basis of an order-of-magnitude argument.



equations for functions of & wijch are obtained vy such an assumed

golution are solved Ly exponentsul functions of 8; thus, without loss of
generality, solutionu are assumd of the [orm

W o Acp' cos IR

(2)
f = Bcp : cos IQ
where A ané B are constants; and, from equation (13), n must bLe
rclated to s by the equation
1/2
o .. 1/2
nrt ('af:—l) 01208017 () (22)

By introducing equations (21) into equations (15) and (16), the homogeneous
equations for the values of p are found to be

2
P2 (p-r2 a
2 v 0 (23)
2
[(p2-n°) +20p°) -p B

For nontriviel solutions to equations (23). the determinant cf the matrix
of coefficients must vanish, which gives the characteristic equation

2 2 )
(p2-r2) [(p2-1%) + 20p%) ¢+ p° = 0 (2+)

Ir p2 = n?‘, then only the trivial solution regults; by excludisrg ihic
possibility, equation (24) can be written ac

®2c+1:0 (25)
vhere
2 2.°
[ :.(.2_'3_)_ (26)
P

From equations (23) it is found that

.e y <O (27)

vhere C is 8 solutior Lo equation (29),




ROOTS OF BQUATION (24) for <l

Solutions to the characteristic equation (2i) were first given by Nachbar
[14]) without the details of their derivation. A concise discussion of the
solutions w!ll be given here®* for the purpose of providing various
identities that vill be used subsequently.

If ps 1, the two solutions of equation (25) can be conveniently written
as

5 1/2
C,=-0+ 1(1-p%) EQ (28)

1/2
c, -o- 1(1-0%) =73 (29)

vhere Q amd Q are complex conjugates end i = +-1. The modulus of
Q is unity; that is,

Q=1 (30)

The following expressions for the positive square roots of Q and Q are
noted:

2 )2 4 )2 (51)
J2

@2 .+ La-e)? - 1)t (32)
J2

From equations (26), (28) and (29), four quadratic equations for the roots
p are odbtained; that is

L M2 (33)
2.2 |+ @ (34)
el I i (35)
 + 51/2 : (36)
The two roots of equation (33), designated p, and P; » are
5 1/2
P, = ;’ [-Ql/" -(Q+‘+n2) ] | (37)

¥
The notation employed here differs from that of Reference 1li; the notation
of Reference 4 is utilized.




1/2
P <3 [-Ql/ + (e ] (38)

Similarly, the remaining six roots are obtained from equations (34), (35),
and (36). They are

[ P, =-D
from equation (34): = 2
- p/ = - pl
R
from equation (35): _ (39)
- P = Pg
™ P, = = D
from equation (36): ! _b
- Py T -
1/2
The quantity (Q+1+n ) is taken to be the positive square root of
(Q+n?) and mey be written in the t'ollowing way:
1/2 :
(@) = Ep(rrkn? p)2 4 g(rbn? 4 0)22) (40)
J2
where / /
1/2 1/2
r= +(1-8n2p + 16nh) = +[(1+n2-p2) + l-p2] (k1)

Note that if p £ 1, then r must be positive.

With the eid of equations (31) and (40), and p, can be written vith
their real and imaginary parts explicitly slparated, the expressions are

P - m(a +18,) (s2)
and

.2-J—2(a + 18, ) (43)
where

-(1-;:)1/2 -(r+hn2-o)l/2; -(1+o)l/2 -(r-‘m2+p)l/2

10



(1-0)Y2 c(rerlop)?, s, = (1e0)2 (retrep)? (ui)

The following identity is useful end may be verified by direct expansion:
(r+‘+n2-p)1/ 2(r-hn2+p)l/ o= (1-92)1/ 2 (-5)

SOLUTIONS SUITABLE FOR ANALYZING THE BEHAVIOR OF LONG SHELLS

Four roots of equation (24), through p,, have negative real partis
for values of p less than uni%y, a proof of this statemeni is given in
Appendix I. Roots of this type indicate that solutions which decay
exponentially with ¢ exist and that sufficiently long shells may be
treated mathematically as semi-infinite whenever p < 1. A discussion of
the applicability of "semi-infinite" buckling results to shells of finite
length is given in the next section.

If a shell is assumed to be semi-infinite along the positive x-axis with
its edge at x =0, f and w will be bounded as x - «® and can be
written, with the aid of equations (27) through (30), (37), and (39), as
follows vhen p s 1:

= [:Alepil.g + Aeepyg + Azﬁeplg + Aueng:] cos ng (46)
£ .- A1Q TePrt + a7 lePet « A0 TeP1t + AT 'lepeg:] cos np
= - A:I:Q';ep_le + Agﬁepag + lx:,’erlg + Auera'E’] cos ng (47)
- y
vhere through are arbitrary constants. Substituting equation (47)
into e ion (17) ds the following results:
0
o, = _
Tl =t . [Alieplg + Azﬁep2§ + A3<-1e1’1g + AueragJ cos np (48)
0
“xy Pt p.t | sin no
1 _ o = P.F = Pt P = pePof | 8in
T - T [Alplqe 1"+ ApQe™2" + Agp)Qe”l” + A,p e 2:]
(49)
%
R L s ]( 2
50

11



Substituting equations (h6), (h€). and (90) into the expression for v .
in equations (18) gives 'Y

\ s .k - vf + w

Py sEE 1

= [:}lxl[l-ﬁ(piwne)]eplE + AE[I-E(P§+Vn2)]ep2g

+ As[l-Q(ii + vn"’)]epl§ + Ah[l-Q(ES + vna)i] cos ny (51)

The utilization of equations (48) and (Y0) in the expression for u L
equations (18), and subsequent integration of the result ylelds ’

- (112+vpi) ; (If)'+vp£)
u = AlQ —— epl" + Aaa ——— ep2§
Py Py
(P+B)) 5 (n®#33) 5
+ A3Q' e t'pl + A).‘,Q — ep2 COE 1Y (92)
P D,

The process of integretion with respect to & could introduce & linear
function of ¢ 1in addition to the terms given in equation (52). This
linear function, however, represents the same form of displacement as Ub,
and thus it is uniquely included in Uy when the axial stress o is
fixed in magnitude.

Equation (52) can be put in a more convenient form by the use of the
identity
p,b, PP
P2 PPy
= = == =1 (53)
n n

which may be verified by direct expancsion. By using this result, equation
(52) can be written as

- = P, £ = P,k
u = [AQ(p,+vp,)e"1” + AQ(p +vp,)e"2

= s )P E = o VePof
+ AQ(P, D) ) P17 + A,Q(p, +vD,)eP2" Tcos nop (54)

All the necessary physical quaniitics can now be oblained from cqualions
(46), (48) through (51), and (54) ror the semi-infinite shell 1n tLerms of

the four arbitrary constants A] through Ah’

12



APPLICABILITY OF SEMI-INFINITE SHELL BUCKLING SOLUTIONS TO SHELLS OF FINITE
LENGTH

In the preceding discussion of solutions to the governing differential
equations, the solution suiteble for the analysis of semi-infinite shells
was assumed to be adequate for "long" shells. A shell is "long" according
to this definition if the conditions at one of its edges can be analyzed
without regard to the conditions prevailing at the other.

t is well known that there are two decay lenghts for edge disturbances in
circular cylindrical shells; these correspond to the exponentials propor-
tional to @ and @,. Since the quentity n 1ic substantially less than
unity for thin shells, it follows from the proof in Appendix I that the
Qs - exponential terms in the semi-infinite shell solutior have large decay
lengths, thus suggesting that shells may have to be very long before this
solution alone can satisfactorily describe their buckling behavior.

Results obtained in References 5 and 6, however, indicate that buckling
strecses are essentially independent of shell length for shells of practical
geometric proportions in the ceses of edge restraint that were investi-
gated*; buckling stresses obtained in References 2 and 4 for semi-infinite
shells agree well with their finite-length counterparts for all but the
very short class of shells. The buckling mode shapes in some cases offer
intuitive Justification for this egreement between "finite-length" and
"semi-infinite" buckling stresses. The modes for finite-length shells
found in Reference 5, for example, can be visualized as having been con-
structed by appropriately joining, in a continuous manner, two oppositely
directed, semi-infinite modes at the midlength cross section of the
cylinder; the superposition of a rigid body rotation and a reflection of
one of the semi-infinite modes could represent the finite-length mode which
is antisymmetric with respect to the midlength cross section.

Since past experience points to the conclusion that semi-infinite shell
analyses, which offer great mathematical simplicity, predict nearly the
same buckling stresses as their more involved finite-length counterparts,
the semi-infinite assumption will be used exclusively in the subsequent
determination of buckling stresses. Little generality is sacrificed in
cdopting this assumption, since very short shells, the class of shells for
which this assumption has been shown to be in error in Reference 6, are
likely to buckle well into the plastic range.

¥* "
There 1s one exceptional case that was found in Reference /. This ig the
case of a relatively short, completely unrestrained cylindrical shell,
and it will be discussed in a subsequent section.
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CLASSIFICATION OF EDGE CONDITIONS

SCOPE OF THE INVESTIGATION

When cylindrical shells are utilized as structural components of flight
vehicles, their edges ere restrained by adj)acent structural components,
which may be represented by "effective" elastic or inelastic springs. When
cylindrical shells are tested in compression under laboratory conditions,
loads may also be supplied to the shell edges by friction between the
source of load application and the shell or its mounting fixtures. Such
effects will not be considered here; the types of edge fixity to be treated
may be regarded as limiting cases of more realistic edge-fixity conditions.

The edge conditions characterized by equations (20) can be conveniently
separated into two categories which, for the lack of better terminology,
will be referred to as "normal" and "tangential" edge conditions. Normal
edge conditions refer to the conditions involving quantities that govern
the motion of the shell =dge in the direction normal to the tangent plane
of the shell midsurface at any point; these are then conditions describing
the behavior of an edge due to bending and twisting. Tangential edge
conditions, on the other hand, govern the motion of the shell edge in tlLe
tangent plane to the shell midsurface at any point and characterize the
behavior of the edge under loads parallel to the tangent plane. Since
only limiting cases of practical edge restraint are to be studied here,
these two categories will be classified separately.

CLASSIFICATION OF NORMAL EDGE CONDITIONS

Each of the following four classes of normal edge conditions will be
identified by two letters which are abbreviations for the terminology
assigned to the particular class:

FF: The "free-free" class for which

R, =0 and M =0 (55)

FC: tie "free-clamped" class for which

R =0 and Vs 0 (56)

SS: The "simply supported" class for which

w=0 and M =0 (57)

14



CC: The "completely clemped'* class for which

w=0 and w, =0 ' (58)
14

It should be mentioned that within the linearized theory of static stability,
the condition w = U in equations (57) and (58) may be replaced by

W=ty +W =0 (59)

If the perturbation displacement wl ie chosen to nullify the uniform
radiel expansion W,, then the dispPlacement W, will approach infinity at
the buckling stress. Each of these equivalent ways of prescribing the
boundary conditions lecads to the same unique buckling stress, since the
buckling condition i1s defined by the vanishing of the same determinant in
both instances.

CLASSIFICATION OF TANGENTIAL EDGE CONDITIONS

Each of the four classes of tangentiial edge conditions will be identified
by an integer; the selection of one cless of normal edge conditions to-
gether with one of the following classes of tangential edge conditions
represents a complete description of edge restraint:

1: og =0 and ro =0 (60)
1 b
0
2: u =0 and T =0 (61)
Sh
0
ST | =0 and v =0 (62)
X
1
by w =0 and v =0 (63)

As an example e classical buckling stress is obtained for SS3 edge
restraint when eguations (57) and (62) are enforced at the ends of the
shell.

*"Clamped" is a conventional description of this class; the term "com-
pletely clamped" is introduced to provide a contrast with the "‘ree-
clamped" definition given previously. No standard terminology has been
sgreed upon, however; the authors of Reference 6, for example, refer to
this class of restraint as "rigid-fixed".

15



BUCKLING STRESS RATIOS FOR LIMITING CASES OF EDGE RESTRAINT

FF1l CASE

Thie case was treated initially by Hoff [1] for axisymmetric buckling
deformations. The generalization to nonexisymmetric buckling wus subse-
quently accomplished by Nachbar and Hoff [2]}; in this study, however,
boundary conditions which were inconsistent with the differentiasl equations
that the authors utilized in the analysis were employed to formulate the
problem. This inconsistency was later pointed out by Hoff and Soong (6]
and was corrected in their extended analysis which accounted for the effect
of finite shell length.

Although the correct numericel result for long shells was essentially
obtained in Reference 2 and was verified in Reference 6, it is of theoret-
ical interest to reinvestigate this case, for it will subsequently be shown
that a closed-form expression for the buckling criterion is obtaeinable.
However, the important result of the analysis is the procedure of simplifi-
cation which can be used directly to treat other cases without great diffi-
culty. A collection of identities which will be used in the following
analysis aeppears in Appendix II.

with the ald of equations (46), (48), (49), and (20), the requirements
given in equations (55) ard (60) for the edge at x (or ¢) = O 1lead to
the following four algebralc equations:

B ) ) Q Q i
(pS-vn?) (p5-vn°) (5o -nif) (v’
2 2 2 - 2y = =2 2
+2p= (2= +2p=(2=-v +2p=(2~ +2p=(2-
fl[pl (2-v)n"] p, [p;*2p-(2-v)n"] D, [P; +2p-(2-v)n"] P, [P, +2p-(2-v)n ]_J

r- =

x| 2| =0 (64)

16
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EBe ross of the matrix of coefficients correspond to the vanishing of
») T, M, and R_, respectively.
x50 Xyt X X

Equation (64) represerts a system of homogeneous, linear algebraic
equations; nontrivial solutions for the constants A, through Ah are
possible only if the determinant of the matrix of coefficients vanishes.
The value of the stress ratio p for which the determinant vanishes are
critical values which correspond to buckling within the scope of linear
static stability theory.

Since the vanishing of the determinant of the metirix of coefficients is the
only factor of interest here, it it desirable to multiply the rows and
columns oi' the determinant by nonzero quantities in order to obtain alge-
braic simplifications. The first cperations to bte performed are:

1. Multiply the columis of the matrix by pz, P, 52, and 'p?l,
respectively; and in view of equation (53), n2 “factors may be dis-
regarded in the last three rows of the matrix since they do not
influence the vanishing of the determinant.

2. Subtract the first column from the second, and subtract the third
column from the fourth.

The modified determinantal equation resulting from the above operations is

Q 0 Q 0
=0
[98¢lop-(2-v)a®)  (83-05)  Ftlee-(2-v)i®)  (Bep) (65)

The factor (pz-pl) multiplying column 2 and the factor (p,.-p,) may be
removed, since they represent multiplication of the remaining determinant

by

Thus, equation (65) can be written as

PR - D,Q -Q

Q 0 Q 0

(py-v2,) (1+v) (7,17, (1+v) | =0
p2+[20-(2-v)n?] (p,+p,) o +[20-(2-7)n ) (3,45,  (67)

17



The following operations are now performed:
-

1. Multiply column 2 by Py and add the result to column 1; multiply
column 4 by 52 and add the result to column 3.

2. Equation (53) and the following identities are used to simplify the
modified first and third columns:

pi + pg - 2n° + Q (68)
P +D5 =an” +3Q - (69)

The determinantel equation beconmes

o -Q 0 -Q
Q 0 Q 0
(py*p,) (1+) (2, +7,) (1w) |=0 (70)
Q+k (py+p,) Q+ k. (2,+2,)
where
K = 2p + (1+v)n° (71)

If the rows and columns of the determinant in equations (70) are rearranged,
the result can be conveniently written as the sum of two determinants

b=0, +8,=0 (12)
where
Q Q 0 0
Q Q 0 0 - .
8y = _ - (1+v)(@-0)%(eD)
0 0 -Q -Q
(p*p,)  (p1*P,) (1+v) (1+v) (73)
and

18



Q Q 0 0

0 0 ) -Q _ = e
= k(l+v)(Q-Q)2-[(P1+P2)Q-(P1+P2)Q]2

[ =
n
H

(p,*p,) (2+p,)  (#v)  (1+v)

k k  (p*p,) (py*p,) | (74)

The substitution of equations (73) and (74) into equation (72) yields the
simple result

(GR2(1+)[(aR) + k] = [(3,45,) - (,+p,))° (75)
However, ‘ |
Q+Q +k = (l+v)n2 (76)
so equation (75) offers the two possible solutions
(Q-)(1+v)n = 2[(p;+2,)Q - (p P, 0] (77)

By direct expansion, the following expressions .are easily obtained:

(3,45,)8 - (9,*9,)Q = - ii[p(r-un%)l/a -(1-2 ()] (78)

1/2

(@) = - 24(1-p°) (79)

Equation (77) is, therefore, equivalent to
(1-62)2 Vo(1ev)n = slp(r-brfep)t? - (167)1/2 (ratn®0) /2] (80)

The quantity (r'dvhne-p)]'/2 cannot vanish unless p = 1. It may also be
observed that p = 1 will satisfy equation (80). Since solutions for p <1
are of interest, the multiplication of equation (80) by (r+in2-p)1/2 is per-
missidle; and, if the common factor (1-92)1}2 is i’nored after equation (L5'
is employed, the following two alternatives are deduced from equation (80):

J2 (l+v)n(r+1+n2-p)l/2 = p-(r+l+n2-p) (81)
J2 (l+v)n(r+1+n2-p)l/2 = -p+(r+1+n2-p) (82)

The smallest value of p 1s obtained from equation (82); 1t was found
numerically in Reference 6 to be 0.380 for v = 0.3 and corresponds to
n = 00300
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The above equations are extremely scusitive tO approximate techniquas of
golutior. MHowever, 1f n 1& permitted to vanish in either equation (81)

or (£2), whieh upﬁu axirymmetric deformation, the selution o = 1/2
regulte; this is the solution that vas first odbtained by Hoff in Reference 1.

In their study of finite-lergth effects, Moff and Soong (6) liscovered
that very chort chells vith FFl edgec can bYe buckled by extremely low
values of stress; the mode of irnetebility {s one of tvisting as a curved
strip and can easily be visualized. This mode of buckling, however, chould
rot be a matter of ccucern for shells that are currently of interest.

2 o\

Equations (55) ard (61) vill be satisfied at { - O 1f the first row of
the coefficient satrix in equations (64) is replaced by

(s .8 P8 PR pQ) (6s)
If the saze sequence of operations iv performsed vhich simplified the FFl

case to the forz given ir equatiors (70),the buckling condition for au
FF2-supported shell carn be vritte:n

T Up,ep,) a’ 40,7,

Q ¢ ¢ © .0 (8w
(p,*p,) (1v) (3, %,) (14v)
Qe k (pyp,) Sk 3,%,)

If rov 2 {s =ulziplied by na and added t0 rov 1 in equstion (84) and the

rovs and columns are rearranged, the buckling condition can be written

A'Al’l-.z'o (85)
vhere
- < ) 0
Q 4 ) 0 _
8 - _ - (1)@ <) [Qp, +p,)
ard
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Q Q 0 0
0 0 -alp*p,) Qe +p))
8, =
(py*p,)  (pytp,) (1+v) (1+v)
3 k (p,*p,,) (py*p,)

or
Ay = (Q@Qk(1+) [QApy+py) - 4Dy +0,) 1-(Q-0)7 QD +0,) -a(p #p,) T (ET)
by use ol the 1dentily |
(p #2,)(py#p,) = 7 o (88)

The substitution of equations (86) and (87) into (85), along with the use
of equation (76), gives

(@-0) {(1+v)%:2 (Ao, +p,)-a(F, 5,) 1-r[A(D, 45, ) R(p, *p,) 1) = O (89)

'&%)Q-(P +p_)Q] is given in equation (78), and direct
%her term% lgads to

The quantity [(
expansgion of the o

(e 2,)-(5 5,)) = = lo(r-4n2+0) /24 (2-67) 12 (rkn?-0) /2] (50)
2

If equation (89) is multiplied by (r+hn2-p)l/2 and constant terms and fac-
tors which vanish at p =1 are disregarded, the buckling condition becomes

[r+(14v)?n%10 = [r-(1+v)2r2 ) (r+4n-p) (91)
or

r2 +[(h-(l+v)2)n2 - 2plr - l+(1+v)2n)‘L =0 (92)
The quantity n2 is proportional to t/R, and, thus it is small comy .red
to unity for thin shells. By neglecting the n' term in equation (92) and

by noting that r cen vanish only for p 2> 1, an approximate solution to
equation (92) 1s found to be

r e 20 =[4=(14v)Z]nC (93)

If terms in nJ+ and higher powers of n are neglected in the definition
of r, the following eapproximate expression results:
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rel - hnap (9h)

Equations (93) and (9%) yield the approximate buckling stress ratio
1 2, ¢ .
P me §[l+[2-(l+v)a]n2] (99)

vhich is very nearly one-half for thin shells.

FF3 AND FFu4 CASES

These cases of edge restraint involve the replacement of the condition
=0 with v =0 1in the two preceding analyses; the second row of
t‘nqel coefficient matrix in equations (64) is replaced by

([1-G(p7+vn®) 1[2-Q(p5 +vn7) 1R(BE+n®) 1 [1-Q(Fowvid) ) (96)

The systematic simplification procedure employed in the two previous cases
can be utilized again. The algebra is slightly more involved, bul the
buckling stress ratios for both FF3 and FF4 restraints are one-half plus
small correction terms, the fircl of which is proportional to n° as in
the FF2 cese.

FC1l CASE
The simultaneous satisfaction of equations (56) and {60) for nontrivial

values of through Au is assured if the following determinantal
equation 1s satisfiled:

I T e q

e pPR PR PR
1 2 -l -2 -0 (97)
3 3 =3 =3

If the following operations are performed on the above determinant,
1. Multiply the columns of the determigant by p and D
respectively, and disregard the n factor &riné in the l&bt
three rows.

2. Subtract column 1 from column 2, and subtract column 3 from
column k4,

3. Remove the factor (p pl)(52°51) =1 from the determinent as in
equation (65).
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4. Rearrange rows and columns so as to have the four vanishing
elements occupy the upper right quadrant of the determinant.

Then the buckling condition becomes

Q Q ) 0

’ : ° ° (Q-Q)[Q(p. )-Q( )

- - _ = (Q-Q)[Q(p,+p,)-Q(p,+p,)] = O
B B (3,+p,) (p,*p,) (96)

The first factor in equation (98) vanishes for p = 1. From equation
(7€), the second tactor vanisheg if

o(rein+p) /2 (1622 (reirPop) /2 0 (99)

If equation (99) 1s multiplied by (r-Hm‘?-p)l/2 and the factor (l-p‘)l/a

is disregarded as in equation (81), the following result is obtained:

r=2p- Ln® (100)

If both sides of this expression are squared and the definltion of r is
introduced, the guadratic equation

1 - 8% + 160" = (2o - kn?)? (101)
is obtained; this result may also be written as
bp? - Bn% -1 =0 (102)

The positive root of (102) is

Jl + hnh + n2 (103

which 1s very nearly one~half for thin shelle.

©
n
-

FC2 CASE

Equations (56) and (61) will be satisfied at § = O if the first row or
determinant in equation (97) 1s replaced by

- = = = )
[paQ, P,Q PQ plQ] (10k,
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If a sequence of elementery operations is applied t. the determinant, the
buckling condition car. be simplified to

Q Q 0 0
1 1 0 0
2
r - _|=r(@Q) =0
pea P50 -Q 3
pi Ei 1 1 (105)

The factor r cannot vanish for values of p of interest, and (E-Q)
vanishes for p = 1; therefore, buckling at wvalues of stress less than the
classical value 1s not possible. A discussion of buckling at p =1 is
glven in Appendix III.

FC3 CASE

Equations (56) and (62) will be satisfied at & = O for nontrivial values
of Al through Au if

Q Q Q Q
=2 = 2 -2 -2
(1-Qp,) (1) (1-ap;) (1-p;) | =0
P, P, Dy 5,
pi pg Si’ ‘p‘g (106)

The application of & sequence of elementary operations reduces the buckling
condition to

-(@-0)% + 0 [Q(p *p,)-a(p) 4D, ) 1 (A(p, *p,)-2(p, +,)] = O (107)

If equations (78), (79), and (90) are utilized, the buckling condition
simplifies to

2(1-p%) - n°[r(20%-1) - kn® + 0] = 0 (108)

!
By neglecting terms 1lnvolving n' in equation (108) ané using equation
(94), en approximate equation is obtained; this equation is

2(p41)[1-p + 1E(F = )] = 0 (109)
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The bracketed terE in this expression vanishes (to the same approximation
in terms up to n*) when

2

D~l-§— (llO)

which implies buckling at slightly less than the classical value of stress.

FCh CASE

The FC4 case represents the mosi rigid condition of tangential restraint.
Since buckling stress ratios of unity and slightly less than unity have
been found for the FC2 and FC3 conditions of restraint, there is little
doubt that buckling will occur at p = 1 in this case. It is indicated
in Appendix IIJ that p = 1 1s always a possible buckling stress ratio
for all cases of edge restraint; this fact, along with the intuitive
physical consequences of edge fixity, leads to the conclusion that »p
should be unity in this instance.

SIMPLY SUPPORTED CASES

The SS1, SS2, and SS3 ceases are treated in detail by Hoff and the author
in Reference 4. The buckling stress ratios in the first two cases are the
same as in the FCl case, while the SS3-supported shell can buckle only at
p =1 (this is the classical, simply supported shell).

The same argument presented for the FCh cese applies equally well to the
Ssk case. Since p = 1 1s a possible buckling stress ratio for all cases
and it is the only possible value for buckling in the SS3 case, where the
tangential restraint is less severe, one must conclude that p =1 is the
buckling condition for SSke-supported shells.

COMPLETELY CLAMPED CASES

All the cases, CCl through CC4, were solved numerically by Hoff and
Soong [6]. An examination of their results irdicates that if

L t /
= = 111
8> 10 il \ )

where L 1s the shell length, then p is essentially unity for all clamped
edge conditions.

The results of Reference 6 can be verified readily, and the next section is
devoted to a short analysis of the CCl case.
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CCl CACE

The nontrivial satisfaction of equations (%) and (60) at €& =0 is
assured if the following determinantal equation 1s satisfied:

1 1 1 1
Q Q Q 0
— - = o
P Po Py Po
P, Q PR P, Q o0 (112)
The rows in the above determinant reflect the vanishing of w, 02 ,y W g
and Tgy , respectively. 1
i

If column 1 is subtraclted from column 2, cclumn 3 is subtracted from
column 4, the factor (pp - p1)(po - p1) =1 1is noticed, and the columns
are rearranged in the sbove determinant, equation (112) can be replaced by

1 1 0 0
Q Q 0 0 =
- = -(Q-Q" =0
P P 1 1
R P, Q Q qQ (113)

(Q-Q) vanishes only at o =1 , so buckling cannot occur at values of
stress less than the classical value.

CC2, CC3, AND CCh CASES

Each of these cases implies more rigid edge fixation than the CCl case;
it is realized, therefore, that p =1 corresponds to buckling in these
cases,
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CONCLUDING REMARKS

A theoretical analysis, based upon linear theory, of the buckling behavior
of axially compressed circular cylindrical shells has been undertaken to
determine the effect of edge restraint upon the buckling stress; and over-
all eveluation of this effect has been made by studying the 16 limiting
cases of restraint which correspond 1o the vanishing of generelized

forces and generalized displacements at an edge. Of the 16 limiting
cases, 8 permit buckling to occur at stresses less than the classical
value of buckling stress,

The buckling strees ratios for all the casec are displayed in the table on
pege 28. wnile buckling in one case occurs at a value of stress only
glightly less than the classical one, buckling stresses approaching one-
half of this value are predicted in six instances which, interestingly
enough, represent a rather wide variety of restraining conditions; &
further i2 percent utress reduction hac peen found previously by Nachbar
and Hoff for completely unrestrained cylinders of sufficient length. 1In
additien to the seven cages of resiraint which have been analyzed herc for
the first time, the work of previous investlgators for the remaining cases
has been reestablished and supplemented as well. Since the effect of shell
lergth has been shown to be of minor importance for shells of practical
interest, the analyeis 1is simplified by treating semi-infinite snells, and
this simplification permits solutions to be obtained in essentially closed
form.

On the basis of the results obteined, both by previous investigators and
by the present aralysis, it is concluded that the mode of edge restraint
can have a very significant effect upon the buckling stress of thin,
axially compressed circular cylindrical shells. This effect has been
widely overlooked in the past, a possible reason being the absence of a
pronounced shell length effect upon the buckling stress in both theory and
experiment except when extremely short shells are considered.

21



0O=4
I=0d T=206 I=9d Amcvo+Mna o=n i
0=4A
c Tx
TIT=d I=09 Amqo-.muq Amcvo+mua 0 = o :¢
Tax
0= =
T=4d Anvo+|m.ua IT=4d A:vo+mua o=n e
c T c T
T
(9 pue g s30U3IdFIY) e .On.e
€°0=Uu ‘¢°0 = 4 I07 T
IT=0 Acvo+mua Acvo+mna oge°o = d 0= *o T
c I c I
pﬁdnpwwm
. TeTjussus ]
(9 mwo»ohw.w.omv (n uwnucmhm.wwmv 5¢ % x 2 g
0="m=n330] 0= W=mn:ss | o="n="9:04 0="W="9:44 uted3ssy
TewIoN

INIVHISHY d9QF 40 SASYD ONLILIWTT ¥0d SOLLVY SSIYLS ONTDIONG

28




lo'

11.

LITERATURE CITED

Hoff, N. J., BUCKLING OF THIN SHELLS, Proceedings of an Aerospace
Scientific Symposium of Distimguished Lecturers in Honor of Dr.
Theodore von K€rmén on his 80t Ainiversary, May 11, 1961, The
Institute of the Aerospace Scicrces, New York, p. 1.

Nachver, W., and Hoff, N. J., ON EDGE BUCKLING OF AXIALLY COMPRESSED
CIRCULAR CYLINDRICAL SHELLS, Quarterly of Applied Mathematics, Vol.
XX, No. 3, October 1952, p. 26/(.

Ohira, Eiroichi, LOCAL TUCKLING THFORY OF AXTALLY COMPRESSED CYLINDERE,
Proceedings of the Lleventh Jepan National Congress for Applied
Mechanics, 1961, p. 37.

Horf, N. J., and Rehfield, L. W., BUCKIING O AXIALLY COMPRESSED
CIRCULAR CYLINDRICAL SHEELLS AT STRESSES SMALLSK THAN THE CLASSICAL
CRITICAL VALUE, Journal of Applied Mechanics, Vol, 32, Series E,
No. 3, Septemter 1965, p., She.

Hoff, N. J., LOW BUCKTING STRESIES 0F AYTALLY COMPRESSED CIRCULAR
CYLINDRICAL SHELLS Or FINITE LINGTH, Journal of Applied Mechanics,
Vol. 32, Series E, lo. 3, September 1965, p. 533.

Hoff, N. J., and Soong, T-C., BUCKLING OF CIRCULAR CYLINDRICAL SHELLS
IN AXIAL COMFRESSION, International Journal of the Mechanical Sciences,
Vol. 7, No. 7, July 1965, p. W9,

Hoff, N. J., THE EFFECT OF THE I'DGE CONDITIONS ON THE BUCKLING O THIN-
WALLED CIRCULAR CYT.INDRICAI, JIHFLLS IN AXTAL COMPRESSTON, Proceedings
of the Eleventh International Congress of Applied Mechanics, Munich
(Germany) 1964, ldited by Henry CYrtler, Upringer-Verlag, Rerlin/
Heidelberg/New York, 1966, p. 326,

SCtein, M,, THE FFFECYT ON THE BICKLING OF PERFECT CYLINDERS OF PRE-
BUCKLING DEFORMATIONS AND STRESGES, Collected Papers on Instability
of Shell Structures, NASA TN D-1510, 1962, p. 217.

Stein, M., THE INFLUENCE OF PREBUCKLING DEFORMATIONS AND STRESSES ON
THE BUCKLING OF PERFECT CYLINDERS, NASA TR R-190, 196k,

Fischer, G., UBER DEN EINFLUSS DER GELENKIZEN LAGERUNG AUF DIE
STABILITAT DUNNWANDIGER KRIESZY!.INDER SCHALEN UNTER AXIALLAST UND
INN ENDRUCK; Z. Flugwissenschaften, Jahrg., 11, Hert 3, March 1963.

Almroth, B. O., INFLUENCE OF EDGE CONDITIONS ON THE STABITILY OF

AXTALLY COMPRESSED CYLINDRICAL HELI, NASA Contractor Report,
CR-161, February 1965.

29



12,

13.

1k,

bonnell, L. H., A NEW THEORY FOR THE BUCKLING OF THIN CYLINDERS
UNDFR AXIAL COMPRESSION AND BENDING, Trans. ASME, Vol. 506, November

1934, p. T9.

Donnell, L. H., STABILITY OF THIN-WALLED TUBES UNDER TORSION, NASA
Report No. 479, 1933.

Nachbar, W., CHARACTERISTIC ROOTS OF DONNELL'S EQUATIONS WITH UNIFORM
AXTAL PRESTRESS, Journal of Applied Mechanics, Vol., 29, Series E,
lio. 2, June 1962, p. i3k,

30




APPINDIX I

PROOF TFAT THE ROOTS P, THROUGH P, HAVE NEGATIVE REAL PARTS WHEN o < 1

The roots p, through p, w#ill have negative real parts if the parameters
o, and @, “defined in equ-*ion (L4) are negative; these parameters are

2
o = -(1-0)*/2 -(r+1+n2-o)l/2 (11k)
@, = (l-p)l/2 - (r+1m2-p)l/2 (115}

If p<l, al will be negative if
r o+ 4 - p >0 (116)

By the definition in equation (41) for r, equation (116) can be writter.

51 /n
[(4n2-p)2 + l-p“]l/“ + (bn%-p) >0, (117)
which proves that al is obLviously negative for p < 1.
Equation (11%) implies that a, will be negative if
/
(retn2-p)M2 + (1-0)1/2 (118)

This 1s equivalent to the requiremert that
r>1-n° (119)

Now r can be conveniently written as

r = [(4n2-p)2 + 1-021%2 _ [(1-42)° + 6r2(1-0) M2 (120)

Thus, if equation (120 ) is substituted into equation (119), it is clear

that a2 is also negative for p < 1.

These conclusions are stated in Reference 14, but a proof is not inclided.
A less direct proof is also given i1 Reference &,
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* APPENDIX II

IDENTITIES INVOLVING THE ROOTS Pys Py Pys AND P,

Equations (28) through (41) define and describe the roots of equation (2L).
The four roots of interest, which possess negative real parts for p <1,
can be written as

p, = 212 - (qua®)2) (121)
p, = 312 - (@u?)}/?) (122)
5, = 3122 - @®)!/?) -, (123)
P, = %[51/ 2 | (@un)?) - P, (124)
These roots satisfy the following equations:

g .2 2_2 B

Sl R T . .l

Py : Py &

(125-128)

=2_2 =2 2

el ) 2" _ap

L1 - E

On the basis of equations (121) through (124), it 1s clear that

1
P, - Py = QY2 P, *P, = ()2

3, -5, - 8/2 5, +5, = -@sD2 ) (129-133)
(p,-p,)(P,P,) = P ., ’
Equations (125) through (128) provide the identities
pi + pg - + (pzopl)Ql/a -2n® +Q (134)
a5 -l s (5,582 - 2% + (135)
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With the aid of equations (40) and (1), it is clear that
2)1/2|2 .

(p, + 2,)F, +F,) = |(@n - (136)

Tre identities given herc, in eddition to those derived in the development
of the solu‘ions, are suftf'icient for the derivation of the buckling
eolutions. Some of the chove ident!ties were originally given by Nachbar
in Refererc: 1k, and others can be found in References 4 and 6.
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APPENDIX III

PROOF THAT o = 1 1S ALWAYS A BUCKLING STRESS RATIO FOR LONG SHFLLS

By assigning the value unity to the stress ratio p, equations (28), (29),
(31), and (32) yield the following simple expressions:

Q=-Q-=-1 (137)
Ql/2 =1 (138)
L (139)

If thesc results are substituted into equations (121) through (12k), it is
found that

by = - 31+ (1-42) /2] (140)
p, - A01 -(1-4)1/2) (141)
Ps = P, (142)

Equations (137), (142), and (143) imply that the first and fourth columns,
as well as the second and third columns, cf all the buckling determinants
written for semi-infinite shells become identical when p = 1. Therefore,
the vanishing of all these determinants at p = 1 1s assured.

The question of whether buckling modes for p = 1 can be found to satisfy
a given set of edge restraint conditions is rather academic. It is
sufficient merely to refcr to the numericel results obtained by Hoff and
Soong in Reference 6 for shells of finite length. These results indicatc
that even for a CCh-supported shell of finite length, p 1is essentially
unity whenever

where L 1s the length of the shell. If t/R = 1/100, then a shell must

be shorter than its radius before the buckling stress is noticeably
increased above the classical value. Since the CChk case represents the
most severe condition of' edge restraint, unity is an upper bound for the
buckling stress ratio which can be applied to all shells whose lengthc
exceed thelr respective radii, regardless of the condition of edge
restraint.

4




Unclassified

DOCUMENT CONTROL DATA-R& D

(Security classilication of title, bedy of sbetract and indexing totion must be entered when the overall 1s classilied,
1. ORIGINA TING ACTIVITY (Corpesate sulher) 28. REPORT SECURITY CLASSIFICATION
Department of Aeronautics and Astronautics Unclassified
Stanford University : 6. GROUP

Stanford, California

3. REPORTY TITLE

EFFECT OF EDGE RESTRAINT ON THE BUCKLING OF AXIALLY COMPRESSED
CIRCULAR CYLINDRICAL SHELLS

4. OLscRIPTIVE NoTEs of repert and inclueive dates)
Final Techmcameport

(8. AU THORIE) (Pleet name, siddle iilal, last nome)
L. W. Rehfield

§. REPORY DA TE 7. TOTAL NO. OF PaGES 76. NO. OF REFS
June 1970 43 14
CONTRACT OR GRANT NO. 96. ORNIGINATON'S REPOAT NUMBERIS)
DA 44-177-AMC-258(T)
S PROJECT NO. USAAVLABS Technical Report 69-31

Task 1F162204A17001
e,

b, OTHER REPORT NO(S) (Any other numbore the! may bo ar wed
thie report)

[ 3

10. DISTRIBUTION STATEMENT
This document is subject to special export controls, and each transmittal to foreign
governments or forexgn natmnals may be ma.de only thh prior approval of U. S. Arm

ion M aporato 5 0 : oiniz 604,
" .U EMENTARY NOTES |3 SPONSORING MILITARY ACTIVITY

U.S. Army Aviation Materiel Laboratories
Fort Eustis, Virginia

.i STRA
A broad analytical study of the effect of edge restraint on the buckling stress of
geometrically perfect, axially compressed circular cylindrical shells, based on
linear elastic theory, is presented. An overall evaluation of this effect is made by
studying the 16 limiting cases of restraint which correspond to the vanishing of
generalized forces and generalized displacements at an edge. Of the 16 limiting
cases, 7 of which are studied for the first time, it is found that 8 permit buckling
to occur at stresses less than the classical theoretical value of buckling stress.
The fact that both theory and experiments indicate that the effect of shell length

on the buckling stress can usually be disregarded is used in the analysis. This
fact suggests that shells may be assumed to be semi-intinite; as a consequence,
formulas for buckling stresses are determined in essentially closed form,

DD -~ ““73 .I’L.:’. D'z:m l". l JAN 04, WHICH I8 Unclassified
BT S Paeaal P natins




tae.
KPY WORDS

LINK A LINK @ LiNR €

ROLE LAJ NOLE LAd AOLE L.AS

Shell
Buckling stress
Edge restraint

Unclaseified
T ey el




